quarta-feira, 8 de junho de 2011

– Logarítmos e suas propriedades
1 – INTRODUÇÃO
   O conceito de logaritmo foi introduzido pelo matemático escocês John Napier (1550-1617) e aperfeiçoado pelo inglês Henry Briggs (1561-1630). A descoberta dos logaritmos deveu-se sobretudo à grande necessidade de simplificar os cálculos excessivamente trabalhosos para a época, principalmente na área da astronomia, entre outras. Através dos logaritmos, pode-se transformar as operações de multiplicação em soma, de divisão em subtração, entre outras transformações possíveis, facilitando sobremaneira os cálculos. Na verdade, a idéia de logaritmo é muito simples, e pode-se dizer que o nome logaritmo é uma nova denominação para expoente, conforme veremos a seguir.
Assim, por exemplo, como sabemos que 42 = 16 , onde 4 é a base, 2 o expoente e 16 a potência, na linguagem dos logaritmos, diremos que 2 é o logaritmo de 16 na base 4. Simples, não é?
Nestas condições, escrevemos simbolicamente:
 log416 = 2.
Outros exemplos:
152 = 225, logo: log15225 = 2
63 = 216, logo: log6216 = 3
54 = 625, logo: log5625 = 4
70 = 1, logo: log71 = 0

Curiosidade Matemática – 1089: O Número (dito) Mágico


A razão para que o número 1089 seja considerado “mágico” decorre do fato de ser obtido da seguinte forma:
  • Dado um número qualquer composto de três algarismos diferentes – abc -, inverta esse número, no sentido de trás para frente – cba – e subtraia o menor do maior. Ao resultado dessa subtração – representada por xyz -, onde se deve considerar sempre um número de três algarismos, mesmo quando a diferença na casa das centenas é zero, some o seu inverso – zyx – e eis que surge “fagueiro” o número 1089.

O objetivo deste post é demonstrar porque isso sempre ocorre. Mas, antes alguns exemplos para que não restem eventuais dúvidas quanto ao enunciado.
Exemplo 1: Seja 367 um número escolhido, que escrito de trás para frente é 763. Subtraindo o menor do maior obtemos:
763 – 367 = 396
E somando o resultado obtido ao seu inverso de trás para frente:
396 + 693 = 1089
Exemplo 2: Agora tome o número 675. Utilizando-se dos mesmos procedimentos vem:
675 – 576 = 099 => 099 + 990 = 1089
Observe que no exemplo acima o zero a esquerda – em 099 – deve ser considerado para que o resultado seja o número “mágico” 1089.

terça-feira, 7 de junho de 2011

 ''A Matemática, quando a compreendemos bem, possui não somente a verdade, mas também a suprema beleza.''